Большая коллекция рефератов

No Image
No Image

Реклама

Счетчики

Опросы

Оцените наш сайт?

No Image

Пути экономии строительных материалов

Пути экономии строительных материалов

Министерство образования Украины
Киевский государственный университет строительства и архитектуры кафедра строительных материалов

Реферат на тему: ’’Пути экономии строительных материалов”

Написал: студент ПГС-27

Иваненко А.В.

Проверил: ст. препод.

Анисимов А.Б.

Киев -
1996

Вступление
В этом реферате приведены основные направления снижения энергетических затрат при производстве стали, цемента, сборного железобетона. Также описаны: основные источники потерь цемента при его производстве, транспортировке, применении; эффективные направления снижения расхода металла в железобетонных конструкциях; проблемы экономного расходования лесоматериалов.

При изготовлении большинства строительных материалов основная часть затрат падает на сырье и топливо. На производство строительных материалов и конструкций ежегодно расходуется около 50 млн. т условного топлива. В табл.
1 приведен расход условного топлива на производство основных видов неметаллических строительных материалов и изделий. Наибольшая доля затрат на топливо характерна для себестоимости металлов, цемента, пористых заполнителей, керамических стеновых материалов, стекла.
Экономия топлива достигается интенсификацией тепловых процессов и совершенствованием тепловых агрегатов, снижением влажности сырьевых материалов, применением вторичного сырья, промышленных отходов и других технологических приемов. При производстве стали наиболее эффективной в тепловом отношении является кислородно-конвертерная плавка, основанная на продувке жидкого чугуна кислородом. Коэффициент использования теплоты в кислородных конверторах достигает 70%, что намного выше, чем в других сталеплавильных агрегатах. Применение кислорода позволяет уменьшить на 5—10
% расход топлива и при мартеновском способе. Более полно используется теплота отходящих газов в двухванных мартеновских печах. Прогрессивным способом является получение стали прямым восстановлением из руд, минуя доменный процесс. При этом способе отпадают затраты на коксохимическое производство, являющееся основным при доменном процессе.
В цементной промышленности снижение затрат топлива достигается обжигом клинкера по сухому способу, получением многокомпонентных цементов, применением .минерализаторов при обжиге клинкера и различных типов теплообменных устройств, обезвоживанием шлама, низкотемпературной технологией, полной или частичной заменой глины такими промышленными отходами, как золы, шлаки и др. Один из главных резервов снижения расхода топлива в производстве цемента — уменьшение влажности шлама. Каждый процент снижения влажности шлама позволяет уменьшить удельный расход топлива на обжиг клинкера в среднем на 117—146 кДж/кг, т. е. на 1,7—2 %. Удельный расход теплоты на обжиг при сухом способе составляет 2900—3750 кДж/кг клинкера, а при мокром в 2—3 раза больше. При введении в сырьевой шлам доменных шлаков или зол ТЭС расход топлива снижается на 15—18%. При выпуске шлакопортланд-цемента экономия топлива дополнительно составляет в среднем
30—40 % по сравнению с чистоклинкерным портландцементом.
В нашей стране разработана технология низкотемпературного синтеза клинкера с использованием в качестве каталитической среды хлористого кальция. Эта технология обеспечивает снижение затрат теплоты на обжиг и помол клинкера на 35—40 % и такое же повышение производительности печей.
К энергоемким отраслям промышленности строительных материалов относится и производство сборного железобетона. На 1 м^3 сборного железобетона в среднем расходуется более 90 кг условного топлива. До 70 % теплоты идет на тепловую обработку изделий. Тепловую эффективность производства сборного железобетона можно существенно повысить, снизив тепловые потери, связанные с неудовлетворительным состоянием пропарочных камер, тепловых сетей, запорной арматуры и средств контроля расхода пара.
Непроизводительные потери теплоты уменьшаются при повышении теплового сопротивления пропарочных камер с помощью различных теплоизоляционных материалов и легких бетонов. Более экономичными по сравнению с наиболее распространенными явными пропарочными камерами являются вертикальные, туннельные, щелевые, малонанорные камеры. В последних, например, расход пара на 30—40 % ниже, чем в ямных.
Наряду с уменьшением тепловых потерь важнейшее значение для экономии топливно-энергетических ресурсов в производстве сборного железобетона приобретает развитие энергосберегающих технологий: применение высокопрочных и быстротвердеющих цемситов, введение химических добавок, снижение температуры и продолжительности нагрева, нагрев бетона электричеством и в среде продуктов сгорания природного газа и др. Ускорению тепловой обработки способствуют способы формования, обеспечивающие применение более жестких смесей и повышение плотности бетона, использование горячих смесей, совмещение интенсивных механических и тепловых воздействий на бетон.
Ускорение тепловой обработки достигается при изготовлении конструкций из высокопрочных бетонов. Длительность тепловой обработки бетонов марок М
600—М 800 можно снизить с 13 до 9—10 ч без перерасхода цемента. Эффективной технологией ускоренного твердения является бескамерный способ, основанный на создании искусственного массива бетона пакетированием. Перспективны способы тепловой обработки бетона в электромагнитном поле и с применением инфракрасных лучей. В южных районах страны удельные затраты теплоты на ускорение твердения бетона можно существенно снизить, используя солнечную энергию.
В производстве керамических стеновых материалов и пористых заполнителей эффективным направлением экономии кондиционного топлива является применение топливосодержащих отходов промышленности. Так, применение в качестве топливосодержащей добавки отходов углеобогащения позволяет экономить при получении стеновых керамических изделий до 30 % топлива, исключает необходимость введения в шихту каменного угля.
Наряду с экономией топлива снижение материалоемкости строительных изделий в большой мере достигается рациональным использованием исходных компонентов и в особенности таких, как цемент, сталь, древесина, асбест и др. Экономия этих материалов достигается на всех этапах их производства и применения.
Основным источником потерь цемента при его производстве является вынос в результате несовершенства пылеулавливающих устройств помольных агрегатов.
Перевозка цемента должна осуществляться в специализированных транспортных средствах. При транспортировании в цементовозах потери цемента при погрузочно-разгрузочных работах в среднем в 10 раз меньше, чем в крытых вагонах, в 40 раз меньше, чем в открытом подвижном составе. Одна из причин перерасхода — смешивание используемых цементов различных марок и видов при отсутствии достаточного количества емкостей для их хранения. В этих случаях вынужденно применяют расходные нормы для худшего из смешанных цементов, что приводит к их перерасходу на 6—8 %. Важное значение имеет применение кондиционных заполнителей бетона. Каждый процент загрязненности щебня равнозначен дополнительному расходу примерно 1 % цемента. В табл.2 приведено возможное снижение расхода цемента при обогащении мелкозернистых песков укрупняющими добавками.
Нерационально применение цемента марки 400 для изготовления бетонов марок
М 100 и М 150, а также растворов марок 50 и 75. В этих случаях значительное снижение расхода цемента можно достичь введением в бетонные и растворные смеси минеральных дисперсных добавок, например, золы-уноса ТЭЦ.
Большое значение для экономного использования цемента имеет обоснованный выбор области наиболее эффективного применения цемента с учетом его минералогического состава и физико-механических характеристик. Например, для сборного железобетона, подвергаемого тепловой обработке, наиболее пригодны цементы с содержанием СзА до 8%. Расход цемента увеличивается по мере роста его нормальной густоты (табл.3), поэтому желательно его применение с минимальной нормальной густотой.
На предприятиях по производству бетона и сборного железобетона значительная экономия цемента может быть достигнута при оптимизации составов бетонов, применением смесей повышенной жесткости с уплотнением на резонансных и ударных виброплощадках, предварительным разогревом бетонных смесей и выдерживанием изделий после тепловой обработки, увеличением продолжительности тепловой обработки, расширением объема изготовления конструкций с минусовыми допусками, совершенствованием технологического оборудования и контрольно-измерительной аппаратуры.
Одно из наиболее перспективных направлений снижения расхода цемента — применение химических добавок. Такие традиционные химические добавки, как
СДБ, позволяют снижать расход цемента на 5—10%. Возможное снижение расхода цемента при применении новейших добавок суперпластификаторов составляет 15-
25'%.Дополнительный источник экономии цемента при высоком качестве бетона — применение статистического контроля прочности. Назначение требуемой прочности бетона с учетом его однородности обеспечивает при повышенной культуре производства снижение расхода цемента на 5—10 %.
Экономия металла — важнейшая народнохозяйственная задача. В настоящее время в строительстве ежегодно используется 31—33 млн. т. черных металлов, из которых 12—13 млн. т. расходуется на арматуру для железобетонных конструкций, около 8 млн. т. на фасонный и листовой прокат для изготовления металлоконструкций и опалубочных форм и 11—12 млн. т. на трубы.

Самое эффективное направление снижения расхода металла в железобетоне—применение для арматуры вы-сокопрочной стали. Арматурная сталь разных классов и видов является в известных пределах взаимозаменяемой.
Количество стали любого класса (Т) может быть выражено в условно эквивалентном по прочности приведенном количестве стали класса А - I (Т')

[pic] (А)

где Кпр—коэффициент приведения стали данного класса к стали класса А-1.

В табл.4 приведены значения коэффициента приведения и экономии металла при использовании арматурной стали различных классов.

Значительный резерв по экономии металла обеспечивается при изготовлении напряженной арматуры из высоко прочной проволоки и канатов. Экономия металла достигается также при более точных расчетах конструкций в соответствии с действительными условиями их работы под нагрузкой, приближением армирования к требованиям расчета, оптимизацией конструктивных решений.
При изготовлении арматурных изделий для сборного железобетона экономию стали получают при сварке сеток и каркасов на автоматических линиях с продольной и поперечной подачей стержней из бухт, при расширении всех видов контактной сварки, безотходной стыковке стержней, в том числе разных диаметров, изготовлении закладных деталей методом штамповки.
Существенная экономия металла достигается при рациональном проектировании и использовании стальных форм в промышленности сборного железобетона. На 1 м^3 железобетона в год на металлические формы затрачивается 6—35 кг стали.
Для интенсификации использования форм необходимо ускорение их оборачиваемости в технолегияеском потоке.
Освоение бетона высоких марок — еще один важный резерв снижения расхода металла при производстве железобетона. Повышение марки бетона на одну ступень снижает расход стали примерно на 50 кг/м^3.
При изготовлении металлических конструкций эффективно применение легированных сталей, экономичных профилей металлопроката. Применение трубчатых профилей в строительных конструкциях по сравнению с уголковыми дает экономию до 30 %.
В строительстве все большее значение приобретает проблема экономного расходования лесоматериалов. Прогрессивной тенденцией является максимальное использование вместо древесины местных строительных материалов, а также арболита, фибролита, древесно-стружечных, древесно-волокнистых плит и др.
На современных передовых деревообрабатывающих и лесопильных предприятиях предусматривается максимальная утилизация отходов производства. Для несущих и ограждающих конструкций особенно в условиях агрессивной среды рационально применение клееной древесины. Применение деревянных клееных конструкций в сельскохозяйственных производственных зданиях позволяет в 2—3 раза снизить расход стали и вес зданий. Существенного снижения материалоемкости можно добиться совершенствованием конструктивных решений клееных конструкций, использованием для них элементов из водостойкой фанеры. Применение фанеры позволяет сократить расход древесины на 20—40%, уменьшить потребность в клее в 1,5—2,5 раза.

ТАБЛИЦА 1.
РАСХОД УСЛОВНОГО ТОПЛИВА НА ПРОИЗВОДСТВО ОСНОВНЫХ ВИДОВ СТРОИТЕЛЬНЫХ
МАТЕРИАЛОВ И ИЗДЕЛИЯ.
|Вид материала и изделий |Расход топлива. кг (в условном |
| |исчислении на 1 т продукции) |
|Керамические камни и | |
|глиняный кирпич |50—80 |
|Известь, цемент |115-240 |
|Керамические плитки для |200—610 |
|полов |360—1058 |
|Облицовочные глазурованные |510-590 |
|плитки |500—800 |
|Стекло листовое |200—270 |
|Санитарно-строительный | |
|фаянс | |
|Керамзит | |

ТАБЛИЦА 2.
СНИЖЕНИЕ РАСХОДА ЦЕМЕН ТА ПРИ ВВЕДЕНИИ УКРУПНЯЮЩИХ ДОБАВОК
|Вид и модуль крупности |Среднее снижение расхода цемента при |
|(М) укрупняющих добмок |обогащении природного песка с модулем |
| |крупности |
| | | |
| |1,5-2 |1—1,2 |
|Песок природный средний,| | |
| |5 |5 |
|Мк=2,1—2,5 | | |
|Песок природный крупный,| | |
| |15 |12 |
|Мк=2,6-3,25 | | |
|Каменный отсев | | |
|классифицированный, Мк =|20 |15 |
|3—3,5 | | |
|0тходы | | |
|горно-обогатительных |8 |7 |
|комбинатов | | |
|классифицированные, Мк= | | |
|2,5-3 | | |
|Шлаки ТЭЦ, Мк=2,5-3,5 | | |
| |5 |5 |
|Гранулированные шлаки | | |
| |5 |5 |

ТАБЛИЦА 3.
ОТНОСИТЕЛЬНЫЙ РАСХОД ЦЕМЕНТА (%) В БЕТОНЕ ПРИ ИЗМЕНЕНИИ НОРМАЛЬНОЙ ГУСТОТЫ
ЦЕМЕНТА
|Нормальная |Огносительныи расход |Нормальная|Относительный расход|
|густота |цемента, %, для |густота |цемента, % , для |
|цемента, % |бетона марок |цемента, %|бетона марок |
| |М200—М300 |М400|М50| |М200—М300|М40| М500|
| | | |0 | | |0 | |
| | | | | | | | |
|24 |98 |98 |98 |28 |104 |109|111 |
|25 |100 |100 |100|29 |105 | |115 |
|26 |102 |102 | |30 |107 |112|129 |
|27 |103 | |103| | | | |
| | |105 | | | |118| |
| | | |107| | | | |

ТАБЛИЦА 4.
ЭКОНОМИЯ МЕТАЛЛА ПРИ ИСПОЛЬЗОВАНИИ СТЕРЖНЕВОЙ АРМАТУРЫ РАЗЛИЧНЫХ КЛАССОВ
|Класс |Коэффициен|Экономия |Класс |Коэффициен|Экономия |
|арматуры|т |металла, |арматуры |т |металла, % |
| |приведения|% | |приведения| |
| | | | | | |
|А-I |1 |О |A-V |2,2 |54,7 |
|А-II |1,21 |17 |Ат-IV |1,95 |48,7 |
|А-III |1,43 |30,1 |Ат-V |2,2 |54,7 |
|A-IV |1,95 |48,7 |Ат-VI |2,4 |58,4 |

Список использованной литературы:

1. Г.И. Горчаков, Строительные материалы, Москва, 1986
2. М.В. Дараган, Сокращение потерь материалов в строительстве,Киев,

1988
3. А.Г. Домокеев, Строительные материалы, Москва, 1989
4. А.Г. Комар, Строительные материалы и изделия, Москва, 1988




No Image
No Image No Image No Image


No Image
Все права защищены © 2010
No Image